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1. INTRODUCTION 
     A composite is a structural material that consists of 

two or more combined constituents that are combined at 

a macroscopic level and not soluble in each other. 

Traditional monolithic metals and their alloys cannot 

always meet the demands of today’s advanced 

technologies. In many cases, using composites is more 

efficient. Composites offers several advantages over 

conventional materials, such as, improved strength, 

stiffness, fatigue and impact resistance, thermal 

conductivity, corrosion resistance etc. Again a laminate 

of a composite material does not consist only of 

unidirectional laminae(UD)  because of their low 

stiffness and strength properties in transverse direction. 

Therefore, in most laminates, some laminae are placed 

at an angle i.e. angle laminae are used [1].    

     In this study, a rectangular elastic body is made of 

composite material, loaded in tension is assumed for 

analysis. The unidirectional lamina and angle lamina 

both are considered for this study. A two dimensional 

(2D) rectangular body is selected because 2D 

rectangular bodies are the most commonly used 

structures. Different boundary conditions are applied for 

UD composite and angle lamina composite (Figs 2, 3, 4, 

5). Finite Element Method (FEM), a versatile numerical 

method, is chosen here to analyze the stresses. 

 

 

2. MATHEMATICAL MODELING 
     Some properties are assumed to analyze the problem, 

such as, the body is in plane stress condition; fibers are 

uniformly distributed; perfect bonding exists between 

fiber & matrix; no residual stress; matrix is free of void 

etc. [1]. Consider a rectangular body made of composite 

material, having a length L, width W and thickness t. 

Thickness is very small compared to its length and 

width. For angle lamina angular orientation of fiber is 

considered to vary from 15° to 90° at an interval of 15°. 

For boundary condition 1, -15° to -90° angular 

orientation are also considered. To model this problem 

the tensile stress is transformed into concentrated load at 

two nodes (figure 1). The horizontal and vertical 

displacements are denoted by u & v respectively. The 

developed stresses are analyzed by finite element 

analysis using rectangular element and compare the 

stresses for different boundary conditions.  

     In order to get some numerical results, some specific 

values are considered for the dimensions of the body 

and the properties of Graphite/epoxy composite are 

used. Here, we considered, length, L= 254 mm, width, 

W=152.4mm, thickness, t=5.08mm, applied uniform 

surface tensile load, pr=68.88 MPa. For graphite/epoxy 

composite, longitudinal Young’s modulus, E1=181 GPa; 

transverse Young’s modulus, E2=10.3 GPa; shear 

modulus, G=7.17 GPa; major Poisson’s ratio, ν12=0.28; 

minor Poisson’s ratio, ν21=0.01589. Four different 
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boundary conditions are used. The first boundary 

condition for UD composite and also for homogeneous 

material is also known as “Constant Stress” problem. A 

self developed computer code in C language has been 

used to formulate local and global stiffness matrices and 

for incorporation of boundary conditions. Then matlab 

has been used to solve simultaneous linear equations 

and nodal displacements were found. By using the nodal 

displacements, the parameters, like stress, strain etc 

were calculated. C programming language was used for 

calculating these parameters. 

 

3. SOLUTION BY FEM 
3.1 Stress-strain Relations 
    Since the thickness of the body is almost negligible 

compared with other two dimensions, the analysis of 

thin body loaded in the plane of the body can be made 

using plane stress assumption. 

In plane stress distribution, it is assumed that 

σyy = τzx= τzy= 0 

The strain and stress vectors are expressed as 

 = 

xy

y

x

,  {σ} = 

xy

yy

xx

 

 

Strains are defined as, εxx = δu/δx, εyy = δv/δy, γxy = δu/δx 

+ δv/δy, where, u and v are the nodal displacements 

along horizontal and vertical direction respectively. 

The strain vector can be calculated as, 

{ε} = [B] * {u}                              (1) 

Here [B] is a 3×8 matrix for rectangular composite 

element (unidirectional composite and angle lamina) [2, 

3]. For unidirectional composite, the material property 

matrix [D] is expressed as follows, [1], which is similar 

that for isotropic materials. 

 

(2) 

Here,  

E1= Longitudinal Young’s modulus of elasticity 

E2= Transverse Young’s modulus of elasticity 

ν12= Major Poisson’s ratio 

G12= Shear modulus of rigidity. 

But the material property matrix [D] is completely 

different for angle lamina composites. For a 2-

dimensional angle lamina the material property matrix 

[D] can be expressed as follows [1] (applying plane 

stress assumption): 

[D]=

 
662616

262212

161211

QQQ

QQQ

QQQ

                   (3)                                                                                 

Here, 
11

RTRDTQ  

 ][Q is called transformed reduced material property 

matrix. 

[T]=
22

22

22

2

2

scscsc

cscs

cssc

, c = cosθ & s = sinθ 

[R]=

200

010

001

, [R] is called Reuter matrix 

The stress is calculated as, 

                     {ζ}= [D]*{ε}                                          (4) 

 

3.2 Step by Step Solution 
     The rectangular element is multiplex elements 

because its boundaries are parallel to the coordinate 

axes to achieve inter elemental continuity. Here 4 

rectangular elements were used in 2 layers for the 2D 

composite body (Figuress.1-4). The elements were of 

equal size. The number of nodes was 9.The FEM 

provides better approximation to the exact value, if the 

aspect ratio (the ratio of the largest dimension of the 

element to the smallest dimension) is nearly unity [5].  

     The next step was to derive the element equations 

that is, to formulate the element stiffness matrix and 

load vectors. These equations can be obtained using the 

principle of minimum potential energy. The following 

formulae were used, 

Element stiffness matrix, 

                         (5) 

                

Element load vector due to tensile stress, 

F3 = F9 = ( pr * W * )/2                    (6) 

Once the element stiffness matrices and element vectors 

are found in a common global coordinate system, then 

the element stiffness matrices and element load vectors 

were assembled to form the overall system of equations 

of the form 

Fuk  

where, [k] is the assembled stiffness matrix, {u }is the 

vector of nodal displacements and {F} is the vector of 

nodal forces for the complete structure.The next step 

was the incorporation of boundary conditions. Here, we 

had four different boundary conditions at the different 

nodes of the body (Figures 1-4).  

Then the system of the equations was solved by matlab 

to obtain the nodal displacements {u}. From these 

known nodal displacements, element strains and stresses 

were computed using the relations of plane stress 

conditions by using C language. Stresses are calculated 

at point 1-10, according to figure 6. 

 

4. RESULT AND DISCUSSIONS 
     Since analytical solutions are not available for mixed 

boundary problems, the validity of the FEM modeling 

of the problem was checked by considering an isotropic, 

homogeneous elastic body of the same size under 

constant stress condition. An exact result was obtained 

by the same code used later for the problems. 
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4.1 Unidirectional Composite 
 
4.1.1 Boundary Condition 1 
     For unidirectional composite, boundary condition 1 

is a constant stress problem. Only longitudinal stress 

should present in the all elements. Though because of 

numerical errors, transverse and shear stresses are also 

present. The value of longitudinal stresses for elements 

1, 2, 3 and 4 vary from 66 to 71 MPa. The variations in 

longitudinal, transverse and shear stresses are shown in 

Figs 7, 8, 9. The value of transverse stress varies from -

9.31 MPa to +9.31 MPa. For boundary condition 1, the 

shear stress varies from -16 MPa to +16 MPa. At the 

middle of the element it is nearly zero.  
 
4.1.2 Boundary Condition 2 
     The stresses for boundary conditions 2 are quite 

similar to boundary condition 1. For boundary condition 

2, the highest longitudinal stress is 72.047 MPa at 

element 4 whereas the lowest value is 66.828 MPa at 

element 2. The transverse stresses are also higher at 

element 3 and 4 than element 1 and 2. The highest value 

of transverse stress is -7.338 MPa at element 4 and 

shear stress is 19.73 MPa at element 1.  

 

4.1.3 Boundary Condition 3 
     For boundary condition 3, element 3 shows the 

lower value of longitudinal stress than element 1, 2 and 

4. For boundary condition 3 the highest value of 

longitudinal, transverse and shear stresses are 75.532 

MPa, -6.886 MPa and -20.354 MPa respectively.  

 

4.1.4 Boundary Condition 4 
     For boundary condition 4, both the element 1 and 3 

show the lower value of longitudinal stress. For 

boundary condition 4 the values are 70.982 MPa, -4.007 

MPa and -16.34 MPa. 

     The stress variations for boundary conditions 2, 3 & 

4 are also shown graphically in figures 10-18. From 

these graphs it can be concluded that boundary 

conditions are the dominant factors for developing 

stresses in the elements. 

 

4.2 Angle Lamina 
     The same boundary conditions were imposed for 

angle lamina and then the stresses are now analyzed. 

From the analysis it is seen that when the boundary 

conditions are changed the stresses are changed. For 

boundary condition1, maximum stress developed when 

the angle is 60°. But in case of boundary condition 2, 3 

and 4 it is 45, 30° and 30°. 

 
4.2.1 Boundary Condition 1 (θ=60°) 
     Here longitudinal, transverse and shear stresses are 

maximum at element 1. In case of longitudinal stress it 

is 187.967 MPa. the values of transverse and shear 

stresses are 362.856 MPa and 230.933 MPa 

respectively. 

 

4.2.2 Boundary Condition 2 (θ=45°) 
     For boundary condition 2 longitudinal, transverse 

and shear stresses are very much higher than other 

boundary conditions. The maximum stresses developed 

in the body are 18130.11MPa (longitudinal), 18875.39 

MPa (transverse) and 22454.95 MPa (shear). 

 
 

4.2.3 Boundary Condition 3 (θ=30°) 
     For boundary condition 3, the highest value of 

longitudinal, transverse and shear stresses developed in 

the body are 884.32 MPa, -987.697 MPa and  -708.792 

MPa respectively. 

 

4.2.4 Boundary Condition 4 (θ=30°) 
     In case of boundary condition 4, the highest 

longitudinal stress is -814.362 MPa, the highest 

transverse stress is -662.939 MPa, and the highest shear 

stress is -422.1 MPa. 

     The variations are also shown in graphs in Figs 19-

27. 

 

5. FIGURES 

        

Fig 1. Transformation from applied stress into 

concentrated load 

 

                                                                                                                

 

Figs 2,3. Boundary conditions 1 and 2 

 

 

 

Figs 4,5. Boundary conditions 3 and 4. 

 

 

Fig 6. Node numbering for rectangular element (where 

stresses are calculated) 
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     Fig 7. Longitudinal stress variation (UD composite, 

Boundary condition 1) 

 

Fig 8. Transverse stress variation (UD composite, 

Boundary condition 1) 

 

     Fig 9. Shear stress variation (UD composite, 

Boundary condition 1) 

 

Fig 10. Longitudinal stress variation (UD composite, 

Boundary condition 2) 

 

 

Fig 11. Transverse stress variation (UD composite, 

Boundary condition 2) 

 

Fig 12. Shear stress variation (UD composite, Boundary 

condition 2) 

 

Fig 13. Longitudinal stress variation (UD composite, 

Boundary condition 3) 

 

Fig 14. Transverse stress variation (UD composite, 

Boundary condition 3) 

 

Fig 15. Shear stress variation (UD composite, Boundary 

condition 3) 

 

Fig 16. Longitudinal stress variation (UD composite, 

Boundary condition 4) 
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Fig 17. Transverse stress variation (UD composite, 

Boundary condition 4) 

 

Fig 18. Shear stress variation (UD composite, Boundary 

condition 4) 

 

Fig 19. Longitudinal stress variation for 1
st
 boundary 

condition  (Angle lamina,  θ=60°) 

 

Fig 20. Shear stress variation for 1
st
 boundary condition 

(Angle lamina, θ=60°) 

 

Fig 21. Longitudinal stress variation for 2
nd

 boundary 

condition  (angle lamina, θ=45°) 

 

Fig 22. Transverse stress variation for 2
nd

 boundary 

condition  (Angle lamina, θ=45°) 

 

Fig 23. shear stress variation for 2
nd

 boundary condition 

(Angle lamina, θ=45°) 

 

Fig 24. Longitudinal stress variation for 3
rd

 boundary 

condition (Angle lamina, θ=30°) 

 

Fig 25. Shear stress variation for 3
rd

 boundary condition 

(Angle lamina, θ=30°) 

 

Fig 26. Longitudinal stress variation for 4
th

 boundary 

condition (Angle lamina, θ=30°) 
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Fig 27. Transverse stress variation for 4
th

 boundary 

condition (Angle lamina, θ=30°) 

 

6. CONCLUSIONS 
     When different boundary conditions are present, then 

the imposed boundary conditions become the 

dominating factors and this can be observed by 

comparing the results of different boundary conditions 

with constant stress problem. The numerical results 

show that the location and type of the boundary 

conditions and the orientation of the lamina influence 

the distribution of the mechanical behavior like stresses 

of that body significantly. 

     In this study, the finite element method was used to 

analyze the stresses in regular shaped body. This method 

is even more suitable for irregular shaped bodies. So, 

the future researchers can focus on determining the 

effects of stresses considering irregular shaped body. 

Here, the effect of thermal stresses was not considered. 

It can be a more interesting problem, if thermal stresses 

are added in these problems. 
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8. NOMENCLATURE 
 

Symbol Meaning Unit 

K Stiffness Matrix N/mm 

E Young’s modulus GPa 

υ 

η 

ζxx , ζyy , 

ηxy 

 

εxx,  εyy,  

γxy 

 

{u}, {v} 

 

θ 

 

D 

L 

W 

t 

Poisson’s ratio 

Shear Stress 

Stress components in the x-

direction,y-direction and xy-

plane 

Strain components in x-

direction, y-direction and xy 

plane 

Nodal Displacement in the x 

and y direction 

Angle between global and 

local axis 

Material property matrix 

Length of the elastic body 

Width of the elastic body 

Thickness of the elastic body 

- 

MPa 

MPa 

 

 

- 

 

 

mm 

 

Degree 

 

MPa 

mm 

mm 

mm 
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